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Abstract 

There are several classes of interior point algorithms that solve linear programming problems in 
O(x/ffL) iterations. Among them, several potential reduction algorithms combine both theoretical 
(o(vr~L)  iterations) and practical efficiency as they allow the flexibility of line searches in the 
potential function, and thus can lead to practical implementations. It is a significant open question 
whether interior point algorithms can lead to better complexity bounds. In the present paper we 
give some negative answers to this question for the class of potential reduction algorithms. We 
show that, even if we allow line searches in the potential function, and even for problems that 
have network structure, the bound O(v/'ffL) is tight for several potential reduction algorithms, 
i.e., there is a class of examples with network structure, in which the algorithms need at least 
ll(v/ffL) iterations to find an optimal solution. (~) 1997 The Mathematical Programming Society, 
Inc. Published by Elsevier Science B.V. 
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1. Introduct ion 

In the last decade there has been a lot of  excitement about interior point algorithms for 

linear programming.  In his seminal work, Karmarkar [7] presented an O ( n L )  iterations 

algori thm with O ( n  3) work per  iteration, thus resulting in an O(n4L)  algorithm for the 

linear programming problem: 
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minimize 

subject to 

and its dual 

maximize 

subject to 
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c tx  

Ax = b, 

x>~O, 

(1) 

bly 

Aly + s = c ,  

s >~O, 

where A is an m x n matrix and L is the input size of the linear program. Moreover, he 
used rank one updates to obtain an O(n3'SL) algorithm for linear programming. Since 
then, there have been several path following algorithms for linear programming that need 
O(v/'~L) iterations (Renegar [12], Gonzaga [4]) with time complexity O(n3L). The 
drawback of the latter approaches is that, although they achieve the best known worst 
case bound, they are restricted to make small steps by following the central trajectory. As 
a result, these path following methods are not attractive for a practical implementation. 

A major step in the direction of practical algorithms, still achieving the best known 
worst case bounds, was taken by Ye [ 18], in which he presented a potential reduction 
primal-dual algorithm that solves linear programming in O(V'-~L) iterations and O(n3L) 
time. Freund [3] simplified the algorithm by Ye and showed that certain choices for 
the parameters in the algorithm are in a sense best possible. Gonzaga and Todd [5] 
proposed another potential reduction algorithm, which also solves linear programming 
in O ( v ~ L )  iterations. The major advantage of this class of algorithms is that they are 
conceptually elegant and natural, achieve the best known worst case bounds, and yet 
they lead to practical implementations through the use of line searches. In the theory 
and practice of linear programming this is a rare combination. The simplex method and 
affine scaling algorithm, for example, are practical algorithms, but are not known to be 

polynomial algorithms. 
Since a variety of interior point algorithms solve linear programming problems in 

O(v '~L) iterations, one can naturally ask: 

1. Can the bound O(vFnL) be improved for any interior point algorithm, i.e., is the 
bound inherent in the algorithm or is it because of the weakness of our proof 

methods? 
2. Do line searches improve the theoretical complexity of interior point algorithms? 
3. Can the bound be improved for linear programs of network structure? 
4. More ambitiously, is the bound O(v/-nL) inherent in the linear programming problem? 

We remark that this question is rather deep as it is related to the existence of a strongly 
polynomial algorithm for linear programming. 

Related to the first two questions, it is well known that short step path following 
algorithms need (9 (v/-~L) iterations for all linear programs. Anstreicher [ 1 ] (see also 
McDiarmid [9])  showed that in the worst-case, there is a step among all steps of 
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Karmarkar's algorithm such that the reduction of the potential function can not be 

greater than a constant. Anstreicher [2] sharpened this observation and showed that 

with exact line searches, there is a class of linear programs, in which Karmarkar's 
algorithm can only obtain a decrease of the potential function that is no more than a 

constant for every iteration; he further showed that ®(lognL) iterations are actually 
needed to solve this example. Kaliski and Ye [6] showed that Karmarkar's algorithm 
requires at least fZ(n) iterations to converge for solving a linear program with only 

one constraint. Powell [11] also showed a lower bound of l l (n )  for problems that are 
natural discretizations of a semi-infinite programming problem. Todd [14] (see also 
Todd and Ye [16])  showed a lower bound of l l (n} )  on the number of steps needed 
by certain interior point primal-dual methods to reduce the duality gap by a constant at 
the start of  the algorithm. 

In the present paper we give negative answers to the first three questions for the 
potential reduction algorithms of Ye [18], Freund [3], and Gonzaga and Todd [5]. 
Potential function algorithms are characterized by a parameter q (see next section). We 
give tight bounds for the number of iterations for q = n + O(V~) ,  even if we use line 
searches and even if the linear program has network structure. 

The paper is structured as follows. In Section 2 we summarize the potential reduction 
algorithm and the known complexity results. In Section 3 we exhibit an example that 
has network structure and requires 19 (x/~L) iterations even if we allow line searches. 
The final section contains some concluding remarks. 

We briefly describe our notation below. All vectors are column vectors and the super- 

script ' denotes transpose. Unless otherwise specified, ]1-II denotes the usual Euclidean 
norm, log(-) denotes the natural logarithmic function. For any x E A n, we denote by 
xi the ith coordinate of  x, and when describing an algorithm, we use the notation x k to 

denote the value of variable x evaluated at the kth iteration of the algorithm. 

2. The potential reduction algorithm 

For every linear programming problem, Todd and Ye [ 15] and Tanabe [ 13] introduced 
the primal-dual logarithmic barrier function: 

11 11 

G(x , s )  = q l o g x ' s -  ~ l o g x j -  ~ log sj, 
j=l j=l 

(2) 

where the first term is a measure of the duality gap xts and the two other terms are the 
barrier terms. The goal of the algorithm proposed by Ye [ 18] is to decrease the duality 

gap below a tolerance e by decreasing the potential function G(x, s) at every iteration. 
We first give the following definition. 

Definition 1. A primal and dual solution pair (x, s) is called 8-optimal if the duality 
gap satisfies x' s <~ e. 
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Let L be the input size of the linear program ( 1 ). Note that if an e-optimal solution is 
available with e = 2 -2L, then an exact solution can be found in polynomial time through 
rounding. For this class of potential functions the tbliowing result holds: 

Theorem 1 (Ye [ 18] ). An algorithm that reduces G(x,  s) by an amount greater or 
equal to 6 > 0 at each iteration finds an e-optimal solution (-£,-g) in 

O ( - ~  log ~)i terat ions,  

as long as the initial feasible primal-dual values ( x °, s a) satisfy 

G ( x ° , s  °) = O ( - ~  l o g l ) .  

We note that the previous theorem focuses in finding an e-optimal solution. If we want 
an exact solution we need to replace log( l / e )  by L. Let ( A , b , c )  be the data for 
the linear program ( I ) ;  let x ° > 0, s o > 0, y0 be the initial primal and dual solutions 
respectively; let e > 0 be the optimality tolerance. Let X denote a diagonal matrix 
with (xl ,x2 . . . . .  x,,) in the diagonal. Let en be an n-dimensional column vector of 
all ones. Then Ye's potential function algorithm, which uses the parameters (% o~, q) 
(0 < y < l, a ~> 0, q/> n) can be described as follows: 

Algorithm .,4 (A, b, c, x °, s a, yO, e). 
k=O; 
while (xk) ' s  k > e do 

X k = diag(x k) ; 

-~k = ( AXk) ,  ( AXkXk A,)_I  AXk; 

{ q Xks k u k = ( I  -- -~k) \ ~  -- e . )  ; 

i f  Ilukll >/ 
then (primal step) 

Xku k 
X k+l : X k - -  OL 

[[ukll ; 
sk+ 1 = sk;  

else (dual step) 
X k+l : x k ;  

s k+I - (xk) 'sk (Xk)  -I (u k + e,,); 
q 

end if 
k = k + l ;  

end while 

If Ilu~ll ~ y we say that the algorithm performs a primal step, while if Iluk[] < ~', we 
say that the algorithm performs a dual step. 
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The algorithm proposed by Freund [3] is somewhat different in the dual step: It finds 
a scalar A k C (0, (xk)~s k] such that 

(1--~k) ( q Xksk _ e,,) = \ - y  r 

and then updates the dual slacks as follows: 

U k = ( I - - - A k ) (  q xksk- -  ) \ - y  e . ,  

sk+l _ (xk) 'sk (X  k ) - I  (-ak + e,) .  
q 

The algorithm proposed by Gonzaga and Todd's [5] uses exactly the same primal 
step, while the dual step is more symmetric than both Ye's and Freund's algorithms as 
it uses projected gradients of the potential function both in the primal and in the dual 
space. To be precise the dual step is: 

S k = diag(s~) ; 

-~k = ( AS~) , ( ASk Sk A,) _I ASk; 

v k = ( l - - ~ k ) \ (  q k)'s k _ e , ) .  

If Ilvkll/> y, then 

Skvk 
xk+l  = x~;  sk+l  = x k _ ~llokll. 

The reason why potential reduction algorithms are attractive from a practical point 
of view is that we can improve the performance of all these algorithms by using line 
searches in the potential function. By varying a we can maximize the decrease of the 
potential function at each step of the algorithm. 

For Algorithm .4 the following theorem holds: 

Theorem 2 (Freund [3], Ye [18]) .  
1. If  Algorithm .4 executes a primal step at step k and the step size is chosen to be 

oL, then 

a2 
G(xk+ t ' sk+ l ) -- G(x  k, s k) <~ - a  T + - -  

2(1 - a ) "  

I f  the algorithm executes a dual step at step k then 

2y 2 G(xk+l ' sk+l ) _ G(x~ ' sk ) <~ _ q  - n (q _ n - yv/n) + 
q (1 - y ) (1  - 3y)" 

2. If  q = n +  v/-n, y = 0.22, a = ~, then Algorithm .4 reduces G(x , s )  by a 
constant amount 6 = 0.02 at each iteration, and thus finds an e-optimal solution in 
O( v ~  log( 1/s) ) iterations, provided that G(x °, s o ) = O( ~ log( 1/e) ). 
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From Theorems 1 and 2 it follows that Algorithm ,,4 finds an e-optimal solution in 
O ( ~  log( l / e )  ) iterations. In the next section we show that even if we use exact line 

searches this bound is tight. 

3. Bounds on the number of primal steps of Algorithm ,,4. with line searches 

In this section, we show that Algorithm .,4 needs at least D ( ( v ~ / v )  log( 1/e) ) primal 

steps to find an e-optimal solution for q = n+vx /~  and ~, = O(v~) .  The reasons this is a 
strong lower bound are as follows: (a) Since the work per iteration in a primal step (it 

involves the solution of a linear system) dominates the work per iteration in a dual step, 
our lower bound on the number of primal iterations implies a lower bound on the time 
complexity; (b) The example we construct is a network problem, which implies that 
the network structure does not help in improving the complexity of potential reduction 
algorithms; (c) The algorithm uses exact line searches in the potential function. 

We analyze the following example: 

2n 

(P )  minimize ~_, x i 
i=1 

subject to xi = xi+l, for i 4: n,2n, 

x>~0,  

and its dual 

(D)  maximize 

subject to 

0 

y i + s i = l ,  for i C { l , n +  1}, 

- y i + s i = l ,  f o r i C { n ,  2n}, 

y i - y i - I + s i = l ,  f o r i ~ { i , n , n + l , 2 n } ,  

s>~0.  

Interestingly, problem (P)  has network structure. Problem (P)  can be written in the 
standard form (1) with b = 0 ,  c=e2n and A the 2 ( n -  1) x 2n matrix 

A =  , 
0 B 

where B is the ( n -  1) x n matrix B = (1 . - , , 0 )  - (0,1._l) .  
Notice that for this particular example, the optimal value is 0, all the feasible points 

of (D)  are also dual optimal and the unique primal optimal solution is the zero vec- 

tor. In this section, we analyze the complexity of Algorithm ..4 when we allow line 
searches, and show that there exists a starting point such that Algorithm .4 needs 
D((v"n/~')  l o g ( l / e ) )  primal steps to find an e-optimal solution for (P)  where q = 

2n + vx/-n and p = o(x/-n). 
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In order to simplify the notation, we will replace a/llukll by a in the description of 
the Algorithm .,4, and will suppress the superscript k on a that indicates the current 
number of iterations. 

Obviously the primal iterates have x~ = r k, f o r i  ~< n and x/k = t k for i>~ n + l ,  
where r k and t k are positive constants. Moreover, since b = 0, the duality gap is 
c' x k = n( r k + tk). 

Let q = 2n + Uv/-n, v > 0 (note that (P)  is a problem with 2n variables). We also 
introduce the notation ~ = v/v/'~. We first show the following preliminary properties. 

Proposition 1. I. -~k is independent o f  k and 

(1 ) in t ~k = -- --ene n 0 
n . (3) 

0 In - lene  

2. At every iteration, u~ = Uk+l, Vi 4= n, 2n with 

{ (2 + ~)rk 1, i<~n, 
uki = rk -}- t k 

(2 + ~) t k 
r k + t  k 1, i ) n + l .  

(4) 

Proof. 

-~k = ( AXk) t  ( A x k X k  A,)  _I AXk 

O )'[(r: 0)']-' O) 
0 tkB tkB tkB 0 tkB 

tk B ' 0 ( tk ) 2 B B ' t~ B 

t~ B ' 0 ( t~)-2(  BB ' )  -I  o) 
U k ' 

o) 
tkB 

where U k = B ' ( B B ' ) - I B .  Since I. - U k = (1/n)e.e~, (3) follows. Observe that ~k is 
independent of k. Since b = O, the duality gap is c'x k and therefore, by (3), 

I~  I 1(eo; °)~qx~c I u k = ( I - A  k) X k c - - e 2 ,  = n  e,el  n \ ~  e2n • 
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For  i ~< n, 

n k 
i q ~i=1 Xi 1 

Uki = n ( x k ) ' c  1 --n 

Similar ly ,  for  i >~ n + 1, 

u/k_ ( 2 + v )  tk 
rk + tk 1. [] 

D. Bertsimas, X. Luo /Mathematical Programming 77 (1997) 321-333 

(2n  + V v ~  ) . n . r  k (2 + ~ ) r  k 
1 -  

n • ( r  ~ + t k ) r k + t k 
. 

We  now make  an impor tan t  observat ion,  on which we wil l  base our  analysis .  

P r o p o s i t i o n  2. I f  at  every pr imal  step, an exact line search is used, the step size will  

only depend  on the ratio r k / t  k, i.e., there exists a funct ion g : ]R ~ ~ ,  such that 
cr = g(  rk / t k ) .  Furthermore, 

g(  rk / t  k) = g(  tk / r k ) .  (5 )  

P roof .  The  potent ia l  funct ion  can be writ ten as 

2n 2n 
G ( x k + l , S k + l ) = q l o g ( x k + l ) t S  k+l -- ~--~ 1ogx~ +1 -- ~--~ Iogs~ +1 

j=l #i 
= q l o g ( n ( r  k+l + t k + l ) )  - n l o g r  k+l - n l o g t / + l  + MI 

= q l o g ( r  k+I + t k+l ) - n log r k+j - n log t k+l + M2 

tk)) = q l o g ( r  k + t k _ ce(u~r ~ + un+t 

- n log(1  - ceu~)r k - n l o g ( l  - ceu~+ 1 ) t  k + M2 

r k _ r k + u~+l  ) )  =qlog (1 + ~ ~(u~- 
k - -  n l o g (  1 - -  czu~) --  n l o g (  1 - -  o~un+ I ) + m 3 ,  ( 6 )  

where  Mr ,  M2 and M3 are constants  independent  o f  or. F r o m  ( 4 ) ,  u/k depends  on the 

rat io r~/ t  k. From ( 6 ) ,  we observe  that in order  to min imize  G ( x k + l , s k + l ) ,  the choice  

o f  the s tep s ize  ot wil l  depend  on the rat io r i / t  k, but not on the actual  magn i tude  o f  r t 

and t k, i.e., we can a lways  scale  r / and t k by the same amount  wi thout  affect ing the 

min imize r s  o f  ( 6 ) .  

The  potent ia l  funct ion can be writ ten as a function of  ot as fo l lows:  

G ( c r ) / n  = (2  + ~ )  log(  1 - otM4) - log(  1 - ceMs) - log(  1 - a M 6 )  + MT, 

with M4, Ms ,  M6, M7 constants  independent  o f  o~. Then 

M4 M5 M6 
G ' ( ~ ) / n  = - ( 2 + ~ )  1 - o~m--~ + 1 - o ~ m - ~  + 1 - o t M - - ~ '  

and 

2 M5 2 
at t ( °L) /n=-- (2+v) (1M4-- - - -~M4)  + ( l  - ~ M s )  + (I  M6-~--M6j "~2 
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An optimizer of  G(a)  satisfies G~(a  *) = 0. Therefore, 

329 

Gtt(ot,)/n = 1 ( M5 M 6 ) 2 ( M 5 ~ 2 ( M 6 )  2 
2 + 7  1 - a ' M 5  + 1--ot--=M6 + 1 - - ~ M s ]  + 1 - - ~ - M 6  

( (  M5 )2 ( M6 ) 2 ) 1 ( M5 M6 ~ 2 
V 1 - - - ~ M 5  + l - - -~M6  ~ 1 - a 'M5 1 - - - ~ M r ]  - 2 + 7  + 

> 0 .  

Since all solutions of  G~(a *) = 0 satisfy G"(ot*) > 0, there exists at most one min- 
imizer a* > 0, which minimizes G(a) .  Since we compute a solution a* explicitly 

in Proposition 3, there exists a unique minimizer. Therefore, there exists a function 
g : ~  ~ ~ ,  such that or* = g ( r k / t  k) minimizes G(a)  in (6) .  

Notice that the potential function G(xk+l,s  k+l) can be written as f ( r  k, tk ,a)  for 

some real function f ( - , . , . ) .  Notice, however, that f ( r k ,  tk ,a)  = f ( t k , r k ,  a) .  More- 
over, as we have shown before, f ( r k ,  tk ,a)  = f l ( r k / t k ,  a)  for some function f l  and 
f ( t  k, r e, or) = f l  ( tk / r  k, a) .  So, f l  ( rk / t  k, or) = f l  ( tk /r  k, a) .  Therefore, g(rk / t  k) = 
g( tk /rk) ,  establishing (5) .  [] 

Our strategy to bound the number of  primal steps is based on the previous proposition 
as follows: We select a particular starting point ( r  °, t °) with r° / t  ° = 1 + to*. We will 
choose to*, such that the minimizer 

or* = arg min G( x ° - aX° u °, sO), a>O 

satisfies further that r° / t  ° = t I / r  I. Because of  the previous lemma the new minimizer 
a 1 = g ( t t / r  I ) = g ( r° / t  °) = o~*. Because of  the symmetry of  the particular example, we 

will show that r 1/t I = f l / r  2, which means that the new minimizer a 2 will also be the 

same as a*,  and so on. Therefore, by selecting carefully the starting point ( r  °, to), we 
can force the algorithm to pick the same minimizer in the line search of  the potential 
function at every primal step. 

Let x ° = r ° = 1 + to, x°+l = t o = 1, s o = e and yO = 0 be the initial interior solutions 
of  ( P )  and ( D ) .  

We consider the following system of  equations in ( a ,  to) 

r° / t  0 = t I / r  1 , (7) 

a = argmin G(x  ° - a X ° u  °, sO). vt>0 (8) 

We will first show that the nonlinear system of  equations (7) ,  (8) has a solution for 
(c~, to), which we compute explicitly in Proposition 3. We then show that we can bound 

the number of  primal steps for the Algorithm ..4 to find an e-optimal solution. 
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P r o p o s i t i o n  3. The s o l u t i o n  

0,* = 7, el'* = - -  
2 + 7  

(1 + 7 )  2, 

w i t h  7 = v /~ / -n  sa t i s f ies  the  s y s t e m  (7), (8). 

Proof. S incer  I r ° ( l  au  °) and t  I t°(1 0 = - = au,,+z ) ,  where u ° and 0 - u ,+  1 are given in 
Eq. (4),  we obtain that Eq. (7) is equivalent to 

( 2 + 0 , )  2 

ce= ( 1 + g ) [ ( 1 + 0 , ) 2 + 1 1  + 7 ( 1  +0 , ) "  (9) 

From the proof of Proposition 2 the function G ( a )  = G ( x  ° - a X ° u  °,  s ° )  has at most 
one minimizer that satisfies G ' ( a )  = 0. 

Dropping the superscript 0 for ease of exposition we obtain that 

Ar + At Ar At 
G ' ( a ) / n  = - ( 2  + 7) - -  (10) 

r + t - - c e ( A r + A t )  + - - +  r -- o tAr  t -- o tAt  

where we define Ar = u]r and A t  = un+lt .  

From (4) we obtain 

Ar (2 + 7 ) r  (2 + 7 ) ~  ( 2 + 7 ) ( l  +0 , )  
- - = u l - - -  1 - - -  1 =  - - 1 .  ( 1 1 )  

r r + t  1 +  t 2+09 

Similarly, 

At ( 2 + ~ ) t  2 + 7  2 + 7  
- -  = u . + l  - - -  1 - - -  1 1.  ( 1 2 )  

t r + t  1 + ~  2 + w  

Since, we have defined r / t  = 1 + 0,, we substitute Eqs. ( 11 ) and (12) into Eq. (10) 
and we obtain that Eq. (8) is equivalent to 

- ( 2  + 7) E ] 2 + 7  
( 2 + 7 ) ( 1  + w )  - 1 ( 1 + 0 , ) + 2 + 0 ,  

2 + 0 ,  

2 + 0 , - a [ ( ( 2 + 7 ) ( 1 2 + 0 , + 0 , ) - 1 ) ( 1 + 0 , ) + 2 + 7 - - 2 + 0 , - 1 ]  

By direct substitution it is easy to check that the solution 

2 + 7  
w * = 7  and or*-  - -  

(1 + 7 )  2 

satisfies the system of equations (9) and (13), which is equivalent to the original system 
(7),  (8).  [] 

(2 + P ) ( 1  +0 , )  2 + 7  
- 1  - - - 1  

+ 2 + 0 ,  + 2 + 0 ,  =0.  (13) 

l 
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We next prove our main result. 

331 

T h e o r e m  3. Algorithm ¢4 implemented with exact line searches in the potential function 

needs at  least 

x/-ffl°g z'x/n + 2 n u  e = f~ ( - ~  - ~  l°g 1 ) 

primal steps to f ind an e-optimal solution to the linear program (P) ,  when started f rom 

the solution x °, s °, y0. 

Proof. We first show by induction on k that for all primal steps, a k = ol* a n d  r k / t  k = 

t k+l /r  *+l . For k = 0 the induction hypothesis corresponds exactly to the condition that 
the system (7),  (8) has a solution (Proposition 3). 

Assume that the induction hypothesis holds for k -  1. In Proposition 2 we showed that 
a k = g ( t k / r k ) .  By the induction hypothesis r k - I / t  k - I  = t k / r  k. Therefore, g ( t k / r  k) = 

g ( r k - I / t k - l ) .  From Proposition 2, a k-1 = g ( r k - I / t  k-1 ). Therefore, ce k = ot k-I = or* 

from the induction hypothesis. 
Moreover, r k+l = r k ( 1  - - o z k u k ) ,  and t k+l tk(l  k k = - a u.+ 1 ). From (4) we obtain 

rk + tk I , 

t k+l = t k (1 - ce k ( (2 4- V)t k )) 
Since r k - l / t  k - j  = t k / r  k and we have shown that a k = a *  = a k-I we obtain that 

)) r k _ l  -~ t k_ l  1 , 

Therefore, 

t k r k 
r k + l  _-- r k _  and tk+l = tk 

tk--I r k - I  , 

and hence 

rk + l r k-1 t k 

tk+l" = t k-1  -- r k ' 

where the last equation follows from the induction hypothesis. Hence, the induction is 
complete. 

Therefore, r k / t  k = 1 + to*, if k is even and t k / r  k = 1 + to*, i f  k is odd. We next 
examine the reduction in the duality gap at the kth primal step. Assuming that k is even 
(the case k odd is the same), we obtain 
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r k+l = r k ( 1 - - a k ( ( 2  + v)  r k r k  + t k 

= rk  I 

(1 + ~ ) z "  

Similarly, 

= = tk.  
- a  2+o9* 

Note that the dual steps do not influence the duality gap and therefore, we need only 
to bound the reduction in the duality gap after a primal step. Then 

(x k+!)~s ~+I r k+l + t k+l I 

(xk) ts  ~ r k + t k 1 + ~" 

Since the initial duality gap is n(r ° + t °) = 2n + vx/~, in order for the duality gap to 
be smaller than e, we need at least K primal steps such that 

(2n+~,v~) 1 +; , /  <e,  

leading to 

K >  x/nlog vx/~ + 2n [] 
P e 

Notice that for v = ® ( 1 / v ~ ) ,  which means that q = 2n + 0 ( 1 )  we obtain that 
Algorithm ,A needs II  (n log ( 1/e) ) primal steps to find an e-optimal solution to the linear 
program (P ) .  For v = 0 (  1 ), i.e., q = 2n+® ( v ~ )  we obtain the bound l l ( v / n l o g ( 1 / e ) )  
primal iterations. Finally, as v increases the bound becomes weaker. For example, for 
v = ®(Iogn) ,  i.e., q = 2n + ®(Iogn,v/n) the bound becomes f l ( (x /~ / logn  ) l o g ( l / e ) )  
primal steps. 

We remark that the derived lower bounds can be extended to the algorithms in [3] 

and [5]. However, our example may not establish the worst case lower bound for the 
potential reduction algorithms proposed in [8,10,17,19]. 

4. Concluding remarks 

The example we provided shows that exact line searches for a class of potential 
reduction algorithms do not help in decreasing the number of iterations even for linear 
programs with network structure. We have left open, however, the case of q = n + vx,/-n, 
with v = f~(v/-n). 

All known proofs of  polynomial number of iterations for interior point algorithms 
have some relation with the logarithmic barrier function. Algorithm .,4. uses the logarith- 
mic barrier function to design the algorithm directly, while many other algorithms use 
logarithmic barrier functions to bound the number of iterations. It would be interesting 
to prove a general lower bound for all potential reduction algorithms. 
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